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@ Challenges in the analysis of retrospective studies
o Eligibility
o Data quality
@ Time point alignment
@ Interventions and tests are not random
o Multiplicity of possible analysis strategies

© How do flexible Al/ML algorithms change these challenges?
© Criteria to judge the quality and credibility of observational studies

@ Conclusion
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Retrospective studies vs. prospective studies

@ In prospective studies, the research question informs the study design.
In randomised studies, it even shapes the data generating mechanism

@ In retrospective studies, there is in general less knowledge of how the
data were generated and less control over measurement procedures

o Data from retrospective studies are often analysed using the same
methods as prospective studies, but it is important to realise that the
analysis of these data sets and the interpretation of results is much
more challenging
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@ In contrast to prospective studies, the inclusion and exclusion of
patients in retrospective studies is usually dictated, or at least limited,
by data availability

@ Due to disparities in the access and use of health-care services,
routinely collected data may under- or mis-represent certain
subgroups1234.56.7.8] including

e ethnic minorities
e patients without medical coverage
o low-income and rural populations

@ At the same time, there is evidence that women, elderly, more
educated patients and patients with a greater burden of disease are
overrepresented

o If patients from under-represented groups are present in the data,
there is a risk that they may be mis-represented, because they are
more likely to visit multiple institutions[910:11.12] and they receive
fewer diagnostics tests and interventions!!
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Differences in eligibility across centres

Centre 1
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= Disease severity
overall low
= SES overall high
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respect to treatment effect modifiers[13141. Selection on a consequence of
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Addressing issues arising from eligibility

Results will be biased if the data differs from the target population with
respect to treatment effect modifiers[13141. Selection on a consequence of
the exposure and the outcome will induce collider bias ]

Solutions:

@ It is important to report patient characteristics overall in the sample,
for different centres and to compare these characteristics to the target
population

@ Approaches like inverse probability weighting and multilevel regression
modelling with post-stratification can improve representativeness
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Challenges in the analysis of retrospective studies Data quality
Data quality

@ Retrospective data are not recorded for a specific research purpose at
hand

= Data entries may be incomplete, inaccurate, inconsistently collected
and systematically biased
@ Examples:

e On an emergency call, vital parameters may not be measured if they
are irrelevant to the clinical question at hand

e Prescription orders may not be filled or consumed by the patient

e Temporal changes in the recording of data may produce systematic
differences over time

Sabine Hoffmann 24.06.2025 7/37



Challenges in the analysis of retrospective studies Data quality

Differences in data quality across centres

@ Documentation practices may vary between different clinical settings,
as a function of incentives and of the overall workload of the personnel
collecting the datalt0:17]

Sabine Hoffmann 24.06.2025 8/37



Challenges in the analysis of retrospective studies Data quality

Differences in data quality across centres

@ Documentation practices may vary between different clinical settings,
as a function of incentives and of the overall workload of the personnel

collecting the datalt0:17]

e Combined with differences in eligibility, variations in imagining
techniques, sensitivity of test kits and coding accuracy can create
spurious associations
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Informative missing data patterns and measurement error in treatment and
confounders may lead to over- and underestimation of treatment effects

Solutions:
@ It is important to perform extensive data quality checks, including
plausibility checks and to evaluate multivariate outliers
@ Data audits and validation data:

o Measurement error and (informative) missing data patterns can be
characterised and quantified in validation studies in which prospective
measurements of high quality are collected at the same time as the
routine data collection

@ It is possible to account for informative missing data patterns and
complex structures of measurement error in a Bayesian hierarchical
approach
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Aspects related to timing in retrospective studies

@ In retrospective studies, the first entry for a patient typically has no
clear clinical meaning and it is often unknown which diagnoses or
treatments the patient received before this time point

e Data collection is influenced by daily clinical practice = The timing of
interventions and measurements may be misreported or missing

@ Example: Nurses may only find the time to record clinical events or
changes in medication at the end of their shift
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Time point alignment

@ In a representative sample of reports of comparative non-randomised
studies that assessed the effectiveness and/or safety of drug
treatments, [18] found that in 72% of studies eligibility, treatment
assignment, and start of follow-up were not aligned.
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Time point alignment

@ In a representative sample of reports of comparative non-randomised
studies that assessed the effectiveness and/or safety of drug
treatments, [18] found that in 72% of studies eligibility, treatment
assignment, and start of follow-up were not aligned.

@ In a data audit on the quality of observational study data in an
international HIV research network, treatment regimens and associated
dates and the timings of laboratory measurements were especially
prone to error with error rates of up to 56% and 42% 19
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Addressing timing in retrospective studies

Problems in time point alignment may result in immortal time bias!20-21]

and bias arising from the depletion of susceptibles!22:23]

Solutions:

@ For every variable that is included in the analysis, it is important to
report the time at which it was measured

o Emulated target trial explicitly addresses the timing in retrospective
studies by aligning the time at which eligibility criteria are met,
treatment assignment and start of follow-up, but it is not a panacea
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Target population
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@ It is important to identify measured, unmeasured and potentially
mismeasured confounders in a directed acyclic graph (DAG)

o ldeally, these DAGs should be informed by interviews with clinicians or
by cases with detailed information on all potential confounders to
understand the rationale for treatment decisions

e Statistical techniques to address confounding have often been found
to be insufficient to eliminate this bias!24:25:26,27.28]

@ Bosco et al. (2010), for instance, found that no adjustment method
resolved confounding by indication when comparing breast cancer
recurrence among women treated with adjuvant chemotherapy with
women who did not receive adjuvant chemotherapy 24

o Quantitative bias analysis, instrumental variables approaches and
falsification endpoints consisting of negative controls can be used to
address unmeasured and mismeasured confounders

Sabine Hoffmann 24.06.2025 17 /37



hallenges Ml Interventions and tests are not random

Confounding influences primary and secondary outcomes
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- Missing data
- Differential and non-differential
measurement error
/\ A Measurement uncertainty - A!:,isrgge ment heterogeneity across
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X1 Xe Y
1
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Empirical
findings  Causal
hypotheses
Yy + e

Hoffmann, S., F. Schénbrodt, R. Elsas, R. Wilson, U. Strasser, Boulesteix, A. L. (2021).
The multiplicity of analysis strategies jeopardizes replicability: lessons learned across
disciplines. Royal Society Open Science 8 201925
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and outliers?
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If we ignore uncertainty, it leads to bias
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Original Replication Replication
study study 1 study 2

Sabine Hoffmann 24.06.2025 20 /37



(L EY SN PR R S EWET ETWEER TS S S VRS I IS Multiplicity of possible analysis strategies

If we ignore uncertainty, it leads to bias

A Considering:
- Measurement uncertainty
- Variation in treatment effects

Original Replication Replication
study study 1 study 2

bine Hoffmann 24.06.2025 20 /37



(L EY SN PR R S EWET ETWEER TS S S VRS I IS Multiplicity of possible analysis strategies

If we ignore uncertainty, it leads to bias

A Considering:

- Measurement uncertainty

- Variation in treatment effects
- Analytical variability

Original Replication Replication
study study 1 study 2
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Publication bias and questionable research practices
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The significance filter, the winner’s curse and
the need to shrink
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Figure 1: The distribution of more than one million z-values from Medline
(1976-2019).

bine Hoffmann 24.06.2025 21 /37



(L EY SN PR R S EWET ETWEER TS S S VRS I IS Multiplicity of possible analysis strategies

Questionable research practices as a continuum

Questionable research practices

Selective reporting

Falsification

Fishing for
Analytical significance
variability
HARKing
Publication bias Sloppiness

Errors
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Conflicting evidence

Researchers may address the same research question on the same data set,
but use different inclusion and exclusion criteria, outcome measures, sample
sizes, covariates, and operationalization of covariates
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allenges in the analysis of retro:

Conflicting evidence

ective studies

Multiplicity of possible analysis strategies

Researchers may address the same research question on the same data set,
but use different inclusion and exclusion criteria, outcome measures, sample
sizes, covariates, and operationalization of covariates[29:30.31]
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Does retrieval bag use during laparoscopic appendectomy reduce

postoperative infection?
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Big data paradoxes/3?

A

bine Hoffmann

Original
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X
X
Replication Replication
study 1 study 2
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Big data paradoxes[*?

A Biases and uncertainties on
large routinely collected data:
X
X
X
Original Replication Replication
study study 1 study 2
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Addressing multiplicity: Pre-registration

ANALYSIS
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Improving the transparency and reliability of observational studies
through registration

Florian Naudet and argue that routine of observational research is needed
and suggest how current processes can be adapted to facilitate it
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Multiplicity of possible analysis strategies
Addressing multiplicity: Pre-registration

Data Sec ary
metadata analysis

Study1 — Dataset1
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Dataset 2
—— Study4
L StudyS
Before data Forany After data
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Addressing multiplicity: Multi-analyst studies

Are football referees more likely to give red cards to players with dark skin
[33]

than to players with light skin?

\

Mario Balotelli, playing for Manchester City, is shown a red card duringa match against Arsenal.
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Multiplicity of possible analysis strategies
Addressing multiplicity: Multi-analyst studies

Are football referees more likely to give red cards to players with dark skin
than to players with light skin? (3]

ONE DATA SET, MANY ANALYSTS -

Twenty-nine research teams reached a wide variety of conclusions 1157
using different methods on the same data set to answer the same
question (about football players’ skin colour and red cards).

Dark-skinned
players four times —
more likely than * Statistically significant
light-skinned offect
players to be given
ared card.

Non-significant
effect

Twice as likely = T

——

T
Equally likely =~ }V I .l

Point estimates and 95% confidence intervals. *Truncated upper bounds.
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Multiplicity of possible analysis strategies
Addressing multiplicity: Multi-analyst studies
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Addressing multiplicity: Vibration of effects

Comparing the vibration of effects due to model, data
pre-processing, and sampling uncertainty on a large data set in
personality psychology
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Addressing multiplicity: Account for analytical variability

A

Sabine Hoffmann

Account for:

- Measurement uncertainty

- Variation in treatment effects
- Analytical variability

Original Replication Replication
study study 1 study 2
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How does Al change these challenges?

How do flexible Al/ML algorithms change these challenges?
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Eligibility

o Digitalization and Al may reduce health disparities by providing
broader access to care and reducing costs
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Eligibility

o Digitalization and Al may reduce health disparities by providing
broader access to care and reducing costs

@ The black box nature of algorithms, which may only partly be resolved
through explainable and interpretable Al, makes it difficult to detect
biases and to evaluate generalisability.

@ Transfer learning and modern foundational models may facilitate the
generalization to other settings.
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Data quality

@ Digital health technology, including sensors, wearable remote
monitoring and Al assistance in data collection, extraction, cleaning
and validation may improve quality
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Data quality

@ Digital health technology, including sensors, wearable remote
monitoring and Al assistance in data collection, extraction, cleaning
and validation may improve quality

@ Flexible Al algorithms may be more vulnerable to poor data quality
and make so-called shortcuts where they use spurious features for
prediction rather than to detect clinically meaningful differences

@ Spurious associations may be difficult to detect when the
interpretability of results is limited and when models are trained across
distributed data sets in federated learning

@ Deliberate random noise injection can increase robustness and
generalizability
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How does Al change these challenges?

Time point alignment

@ When modern algorithms are used to analyse large, heterogenous data
sets without filtering based on clinical expertise, it is difficult to
prevent problems arising from time point alignment.
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How does Al change these challenges?

Time point alignment

@ When modern algorithms are used to analyse large, heterogenous data
sets without filtering based on clinical expertise, it is difficult to
prevent problems arising from time point alignment.

@ Overoptimism due to problems in time point alignment may be
difficult to detect when the interpretability of results is limited.
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How does Al change these challenges?

Interventions and tests are not random

@ Causal machine learning may offer robustness to model
misspecification, requiring less modelling decisions and capturing
non-linear associations and interactions
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How does Al change these challenges?

Interventions and tests are not random

@ Causal machine learning may offer robustness to model
misspecification, requiring less modelling decisions and capturing
non-linear associations and interactions

@ When flexible algorithms are trained on clinician-initiated data, they
may show strong predictive performance that only expresses the
actions of clinicians

o Flexible algorithms may learn and reproduce differential treatments
and diagnoses based on socio-demographic factors and thereby
replicate and exacerbate existing biases in the data, including
underdiagnosis bias for historically under-served populations

@ These problems may be more difficult to detect when the
interpretability of results is limited.
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Multiplicity of analysis strategies

@ Al may exacerbate problems arising from the mulitplicity of possible
analysis strategies on retrospective data by making it easier to
generate research findings and by making it harder to discover
questionable research practices and fraud

@ The reproducibility of results may be limited by cost considerations
and by a large number of parameters that may be poorly documented

Sabine Hoffmann 24.06.2025 34 /37



Criteria to judge the quality of observational studies

Criteria to judge the quality and credibility of observational
studies
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Criteria to judge the quality of observational studies

Criteria to assure the quality of retrospective studies

Ideal

Minimal requirements Acceptable
approach

Detailed comparison of
patient characteristics

Eligibilit X )
9 Y with target population
and across centres
Extensive data quality
. checks and reportin:
Data quality p 9

of data pre-processing
and missing patterns

Report exact timing of
all measurements and
of treatment
trajectories

Time point alignment

Directed acyclic graph

Interventions and including unmeasured
tests not random and mismeasured
confounders

Multiplicity of analysis Pre-registration of
strategies statistical analysis plan
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Criteria to judge the quality of observational studies

Criteria to assure the quality of retrospective studies

Minimal requirements Acceptable Ideal
approach
Detailed comparison of|  Inverse probability
ient char risti weighting or multilevel
Eligibility pgte t characte st. cs | weight g 0 ult eve
with target population | regression modelling
and across centres | with post-stratification
Extensive data quality | Audits, standardisation
. checks and reporting | and training in data
Data quality . . .
of data pre-processing | collection, validation
and missing patterns | data to quantify errors
Report exact timing of
. . . all measurements and . .
Time point alignment Target trial emulation
of treatment
trajectories
Directed acyclic graph Quantitative bias
Interventions and including unmeasured analysis and
tests not random and mismeasured falsification endpoints
confounders of negative controls
Multi-analyst studies or
Multiplicity of analysis Pre-registration of extensive multiverse
strategies statistical analysis plan analysis to report
robustness of results
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Criteria to judge the quality of observational studies

Criteria to assure the quality of retrospective studies

Minimal requirements

Acceptable

Ideal
approach

Eligibility

Detailed comparison of

patient characteristics

with target population
and across centres

Inverse probability
weighting or multilevel
regression modelling
with post-stratification

Combination of data
with more
representative data
sources

Data quality

Extensive data quality
checks and reporting
of data pre-processing
and missing patterns

Audits, standardisation
and training in data
collection, validation

data to quantify errors

Account for complex
measurement error
and informative
missing data

Time point alignment

Report exact timing of
all measurements and
of treatment
trajectories

Target trial emulation

Validate accuracy of
time stamps, report
reasons for treatment
switches

Interventions and
tests not random

Directed acyclic graph
including unmeasured
and mismeasured
confounders

Quantitative bias
analysis and
falsification endpoints
of negative controls

Combined analysis
with RCT, high quality
documentation of
treatment decisions

Multiplicity of analysis
strategies

Pre-registration of
statistical analysis plan

Multi-analyst studies or
extensive multiverse
analysis to report
robustness of results

Uncertainty intervals
that account for
analytical variability
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Conclusion

@ Retrospective studies must meet high standards to provide meaningful
insights and to genuinely provide benefit by advancing patient care

@ Using a retrospective design is rarely straightforward and never
automatic. Simply “doing the best we can” using retrospective data is
often not good enough.

@ Credible and reliable evidence from retrospective studies requires good
knowledge of how the data are collected, ideally gained through
extensive validation studies and interviews with clinicians to
understand the rationale for treatment decisions and with the
personnel collecting the data
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Can retrospective studies be seen as more than
hypothesis-generating?

Confirmatory
study with results
that are not robust]

Replication
Discovery Robustness Validation Confirmation and
generalisation
ver
int ng Identify Confirmatory Replication
atterns ncertain study 1
choices Validate
\\\_; Research | ___.|- Measurements
) L question Explore - Study design
ntially through uncertain - Methods
choices
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Thank you for your attention!
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Integrate uncertainty in infectious disease modelling
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