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Challenges in the analysis of retrospective studies

Retrospective studies vs. prospective studies

In prospective studies, the research question informs the study design.
In randomised studies, it even shapes the data generating mechanism

In retrospective studies, there is in general less knowledge of how the
data were generated and less control over measurement procedures
Data from retrospective studies are often analysed using the same
methods as prospective studies, but it is important to realise that the
analysis of these data sets and the interpretation of results is much
more challenging
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Challenges in the analysis of retrospective studies Eligibility

In contrast to prospective studies, the inclusion and exclusion of
patients in retrospective studies is usually dictated, or at least limited,
by data availability

Due to disparities in the access and use of health-care services,
routinely collected data may under- or mis-represent certain
subgroups [1,2,3,4,5,6,7,8], including

ethnic minorities
patients without medical coverage
low-income and rural populations

At the same time, there is evidence that women, elderly, more
educated patients and patients with a greater burden of disease are
overrepresented
If patients from under-represented groups are present in the data,
there is a risk that they may be mis-represented, because they are
more likely to visit multiple institutions [9,10,11,12] and they receive
fewer diagnostics tests and interventions [3]
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Target population

𝜽

Sample

Simple  
Random  
Sampling
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Target population

𝜽
Study population

𝜽

Study setting 
Data availability 

Inclusion/exclusion criteria

Adapted from: Degtiar, I., Rose, S. (2023). A review of generalizability and transportability. Annual Review of Statistics and Its Application, 10(1), 
501-524.
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Differences in eligibility across centres

Target population

Centre 1

- Disease severity 
 overall high

- Disease severity 
overall low 
- SES overall high  

Centre 2
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Challenges in the analysis of retrospective studies Eligibility

Addressing issues arising from eligibility

Results will be biased if the data differs from the target population with
respect to treatment effect modifiers [13,14]. Selection on a consequence of
the exposure and the outcome will induce collider bias [15]

Solutions:
It is important to report patient characteristics overall in the sample,
for different centres and to compare these characteristics to the target
population
Approaches like inverse probability weighting and multilevel regression
modelling with post-stratification can improve representativeness
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Data quality

Retrospective data are not recorded for a specific research purpose at
hand

⇒ Data entries may be incomplete, inaccurate, inconsistently collected
and systematically biased
Examples:

On an emergency call, vital parameters may not be measured if they
are irrelevant to the clinical question at hand
Prescription orders may not be filled or consumed by the patient
Temporal changes in the recording of data may produce systematic
differences over time
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Challenges in the analysis of retrospective studies Data quality

Differences in data quality across centres

Documentation practices may vary between different clinical settings,
as a function of incentives and of the overall workload of the personnel
collecting the data [16,17]

Combined with differences in eligibility, variations in imagining
techniques, sensitivity of test kits and coding accuracy can create
spurious associations
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Target population
ID Hospital Treatment BGA CL Diagnosis
1 1 A 1
2 1 B 0
3 1 B 1
4 1 A 1
5 1 B 1
6 1 A 0
7 1 B 1
8 1 C 1
9 1 C 0

10 1 A 0
11 1 C 0
12 2 A 0
13 2 A 0
14 2 B 0
15 2 A 0
16 2 1
17 2 B 1
18 2 A 1
19 2 B 1
20 2 1
21 2 B 1
22 2 B 1
23 2 1

- Treatment A, B and C available
- Quality of care overall high 


- Blood values measured at  
hospital admission
- Central laboratory 
measurements for all patients
- Additional point-of-care blood 
gas analysis only for patients 
with high disease severity
- Advanced imagining techniques 
with high sensitivity 

Hospital 1

- Disease severity 
 overall high

- Treatment A and B are 
available 
- Quality of care overall low


- Blood values measured 8-15 
hours after hospital admission 
- Reporting of blood values, 
irrespective of provenance 
from point-of-care blood gas 
analysis or central laboratory  
- Basic imaging techniques with 
low sensitivity  

- Disease severity 
overall low 
- SES overall high  

Hospital 2
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Addressing data quality

Informative missing data patterns and measurement error in treatment and
confounders may lead to over- and underestimation of treatment effects

Solutions:
It is important to perform extensive data quality checks, including
plausibility checks and to evaluate multivariate outliers
Data audits and validation data:

Measurement error and (informative) missing data patterns can be
characterised and quantified in validation studies in which prospective
measurements of high quality are collected at the same time as the
routine data collection

It is possible to account for informative missing data patterns and
complex structures of measurement error in a Bayesian hierarchical
approach
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Challenges in the analysis of retrospective studies Time point alignment

Aspects related to timing in retrospective studies

In retrospective studies, the first entry for a patient typically has no
clear clinical meaning and it is often unknown which diagnoses or
treatments the patient received before this time point

Data collection is influenced by daily clinical practice ⇒ The timing of
interventions and measurements may be misreported or missing
Example: Nurses may only find the time to record clinical events or
changes in medication at the end of their shift
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Challenges in the analysis of retrospective studies Time point alignment

Time point alignment

In a representative sample of reports of comparative non-randomised
studies that assessed the effectiveness and/or safety of drug
treatments, [18] found that in 72% of studies eligibility, treatment
assignment, and start of follow-up were not aligned.

In a data audit on the quality of observational study data in an
international HIV research network, treatment regimens and associated
dates and the timings of laboratory measurements were especially
prone to error with error rates of up to 56% and 42% [19]
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Challenges in the analysis of retrospective studies Time point alignment

Addressing timing in retrospective studies

Problems in time point alignment may result in immortal time bias [20,21]

and bias arising from the depletion of susceptibles [22,23]

Solutions:
For every variable that is included in the analysis, it is important to
report the time at which it was measured
Emulated target trial explicitly addresses the timing in retrospective
studies by aligning the time at which eligibility criteria are met,
treatment assignment and start of follow-up, but it is not a panacea

Sabine Hoffmann 24.06.2025 13 / 37



Challenges in the analysis of retrospective studies Time point alignment

Addressing timing in retrospective studies

Problems in time point alignment may result in immortal time bias [20,21]

and bias arising from the depletion of susceptibles [22,23]

Solutions:
For every variable that is included in the analysis, it is important to
report the time at which it was measured

Emulated target trial explicitly addresses the timing in retrospective
studies by aligning the time at which eligibility criteria are met,
treatment assignment and start of follow-up, but it is not a panacea

Sabine Hoffmann 24.06.2025 13 / 37



Challenges in the analysis of retrospective studies Time point alignment

Addressing timing in retrospective studies

Problems in time point alignment may result in immortal time bias [20,21]

and bias arising from the depletion of susceptibles [22,23]

Solutions:
For every variable that is included in the analysis, it is important to
report the time at which it was measured
Emulated target trial explicitly addresses the timing in retrospective
studies by aligning the time at which eligibility criteria are met,
treatment assignment and start of follow-up, but it is not a panacea

Sabine Hoffmann 24.06.2025 13 / 37



Challenges in the analysis of retrospective studies Time point alignment

Aspects related to treatment assignment and inclusion

ID A B C ECMO Mortality
1 0 1 0 0 1
2 1 1 0 1 0
3 1 0 0 0 1
4 0 1 0 0 1
5 0 0 0 1 1
6 1 0 0 1 0
7 1 0 0 1 1
8 0 0 1 0 1
9 0 1 0 0 0
10 0 0 1 1 0
11 0 0 0 1 1
12 0 0 1 1 1
13 0 0 1 0 0
14 0 0 0 1 1
15 0 1 0 1 1
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Aspects related to treatment assignment and inclusion

Hospital admission

Hours after hospital admission

Treatment A

Treatment B

Treatment C

ECMO

ID A B C ECMO Mortality
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Interventions and tests are not random

We often lack important information about which variables guide treatment
selection

Disease 

severity 

Ethinicity

Quality of 
care

Treatment Outcome

FrailtySES
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Challenges in the analysis of retrospective studies Interventions and tests are not random

Quality 

of care

Disease 

severity 

Disease 

severity 

Race

Quality of 
care

Treatment Mortality

Target population

ID Hospital Treatment BGA CL Race Mortality
1 1 A 1
2 1 B 0
3 1 B 1
4 1 A 1
5 1 B 1
6 1 A 0
7 1 B 1
8 1 C 1
9 1 C 0

10 1 A 0
11 1 C 0
12 2 A White 0
13 2 A White 0
14 2 B White 0
15 2 A Black 0
16 2 White 1
17 2 B Black 1
18 2 A White 1
19 2 B White 1
20 2 Black 1
21 2 B White 1
22 2 B White 1
23 2 Black 1

FrailtySES
- Treatment A, B and C available
- Quality of care overall high 
- Immediate treatment initiation 


- Frailty, SES and race unmeasured
- Blood values measured at  
hospital admission
- Central laboratory measurements  
for all patients
- Additional point-of-care blood gas 
analysis only for patients with high 
disease severity
- Advanced imagining techniques

Explanation:

Prediction:

MortalityFrailty

- Treatment A and B are available 
- Quality of care overall low
- Delayed treatment initiation


- Frailty and SES unmeasured 
- Blood values measured 8-15 hours 
after hospital admission 
- Reporting of blood values, without 
knowledge of provenance from 
point-of-care blood gas analysis or 
central laboratory  
- Basic imaging techniques

Hospital 1

- Disease severity 
 overall high

- Disease severity 
overall low 
- SES overall high  

Hospital 2
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Challenges in the analysis of retrospective studies Interventions and tests are not random

Addressing confounding by indication

It is important to identify measured, unmeasured and potentially
mismeasured confounders in a directed acyclic graph (DAG)

Ideally, these DAGs should be informed by interviews with clinicians or
by cases with detailed information on all potential confounders to
understand the rationale for treatment decisions
Statistical techniques to address confounding have often been found
to be insufficient to eliminate this bias [24,25,26,27,28].
Bosco et al. (2010), for instance, found that no adjustment method
resolved confounding by indication when comparing breast cancer
recurrence among women treated with adjuvant chemotherapy with
women who did not receive adjuvant chemotherapy [24]

Quantitative bias analysis, instrumental variables approaches and
falsification endpoints consisting of negative controls can be used to
address unmeasured and mismeasured confounders
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Confounding influences primary and secondary outcomes
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- Missing data 
- Differential and non-differential 
    measurement error  
- Measurement heterogeneity across 
    centres 

Hoffmann, S., F. Schönbrodt, R. Elsas, R. Wilson, U. Strasser, Boulesteix, A. L. (2021).
The multiplicity of analysis strategies jeopardizes replicability: lessons learned across
disciplines. Royal Society Open Science 8 201925
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Challenges in the analysis of retrospective studies Multiplicity of possible analysis strategies

Publication bias and questionable research practices
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Challenges in the analysis of retrospective studies Multiplicity of possible analysis strategies

Conflicting evidence

Researchers may address the same research question on the same data set,
but use different inclusion and exclusion criteria, outcome measures, sample
sizes, covariates, and operationalization of covariates

[29,30,31]
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Challenges in the analysis of retrospective studies Multiplicity of possible analysis strategies

Addressing multiplicity: Pre-registration
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Challenges in the analysis of retrospective studies Multiplicity of possible analysis strategies

Addressing multiplicity: Multi-analyst studies

Are football referees more likely to give red cards to players with dark skin
than to players with light skin? [33]
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Challenges in the analysis of retrospective studies Multiplicity of possible analysis strategies

Addressing multiplicity: Multi-analyst studies

COVID-19 modelling [34]
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Challenges in the analysis of retrospective studies Multiplicity of possible analysis strategies

Addressing multiplicity: Vibration of effects
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Challenges in the analysis of retrospective studies Multiplicity of possible analysis strategies

Addressing multiplicity: Account for analytical variability

Account for: 
- Measurement uncertainty  
- Variation in treatment effects  
- Analytical variability 
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How does AI change these challenges?

How do flexible AI/ML algorithms change these challenges?
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How does AI change these challenges?

Eligibility

Digitalization and AI may reduce health disparities by providing
broader access to care and reducing costs

The black box nature of algorithms, which may only partly be resolved
through explainable and interpretable AI, makes it difficult to detect
biases and to evaluate generalisability.
Transfer learning and modern foundational models may facilitate the
generalization to other settings.
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How does AI change these challenges?

Data quality

Digital health technology, including sensors, wearable remote
monitoring and AI assistance in data collection, extraction, cleaning
and validation may improve quality

Flexible AI algorithms may be more vulnerable to poor data quality
and make so-called shortcuts where they use spurious features for
prediction rather than to detect clinically meaningful differences
Spurious associations may be difficult to detect when the
interpretability of results is limited and when models are trained across
distributed data sets in federated learning
Deliberate random noise injection can increase robustness and
generalizability
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How does AI change these challenges?

Time point alignment

When modern algorithms are used to analyse large, heterogenous data
sets without filtering based on clinical expertise, it is difficult to
prevent problems arising from time point alignment.

Overoptimism due to problems in time point alignment may be
difficult to detect when the interpretability of results is limited.
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How does AI change these challenges?

Interventions and tests are not random

Causal machine learning may offer robustness to model
misspecification, requiring less modelling decisions and capturing
non-linear associations and interactions

When flexible algorithms are trained on clinician-initiated data, they
may show strong predictive performance that only expresses the
actions of clinicians
Flexible algorithms may learn and reproduce differential treatments
and diagnoses based on socio-demographic factors and thereby
replicate and exacerbate existing biases in the data, including
underdiagnosis bias for historically under-served populations
These problems may be more difficult to detect when the
interpretability of results is limited.
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How does AI change these challenges?

Multiplicity of analysis strategies

AI may exacerbate problems arising from the mulitplicity of possible
analysis strategies on retrospective data by making it easier to
generate research findings and by making it harder to discover
questionable research practices and fraud
The reproducibility of results may be limited by cost considerations
and by a large number of parameters that may be poorly documented
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Criteria to judge the quality of observational studies

Criteria to judge the quality and credibility of observational
studies
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Criteria to judge the quality of observational studies

Criteria to assure the quality of retrospective studies

Minimal requirements Acceptable Ideal 
approach 

Eligibility

Detailed comparison of 
patient characteristics 
with target population 
and across centres

Data quality

Extensive data quality 
checks and reporting 

of data pre-processing 
and missing patterns

Time point alignment 

Report exact timing of 
all measurements and 

of treatment 
trajectories 

Interventions and 
tests not random

Directed acyclic graph 
including unmeasured 

and mismeasured 
confounders

Multiplicity of analysis 
strategies

Pre-registration of 
statistical analysis plan
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Conclusion

Conclusion

Retrospective studies must meet high standards to provide meaningful
insights and to genuinely provide benefit by advancing patient care

Using a retrospective design is rarely straightforward and never
automatic. Simply “doing the best we can” using retrospective data is
often not good enough.
Credible and reliable evidence from retrospective studies requires good
knowledge of how the data are collected, ideally gained through
extensive validation studies and interviews with clinicians to
understand the rationale for treatment decisions and with the
personnel collecting the data
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Conclusion

Can retrospective studies be seen as more than
hypothesis-generating?

Confirmatory  
study 1

Confirmatory  
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Research  
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by a research agenda
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Conclusion

Thank you for your attention!
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Sources of information in the modelling of COVID-19

Number of infected individuals

Number of individuals who are tested

Reported cases

Hospitalized cases

Cases needing 

ICU treatment

Deaths
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A hierarchical model of COVID-19 propagation

The disease model:

Ct,m =
∑
u<t

Iu,m(FξC (t − u + 1)− FξC (t − u))
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