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The potential outcome scenario (1) 

• (Y(0), Y(1)) potential outcome vector for a patient 

with Y(0) : outcome if the control (or no) treatment 

   is given  

  Y(1) : outcome if the new treatment is given 

• Interest is in E (Y(1) - Y(0)), 

called the average causal effect, or any suitable 

functional  

of the joint distribution F01 of (Y(0), Y(1))  

• Usually (except for a perfect cross-over study), only 

Y = X Y(1) + (1-X) Y(0) 

     is observed with X = 1 {new treatment is given}. 
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The potential outcome scenario (2) 

• With randomized treatment allocation, we can identify 

the marginal distributions F0 of Y(0) and F1 of Y(1) and 

estimate them in an unbiased way. 

• We can therefore identify and estimate the average 

causal effect  

 E (Y(1) - Y(0)) = E (Y(1)) – E (Y(0)) 

or any suitable functional of the marginal distributions 

F0 and F1 in a randomized clinical trial 

• Randomization ensures balance of all known and 

unknown potential confounders (except for random 

imbalances)  
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The potential outcome scenario (3) 

• The propensity score (PS) is defined as P (X=1|C) 

where C is a vector of covariates 

• We can identify the average causal effect under the 

assumption 

 (Y(0), Y(1)) independent of X | C 

 („No unmeasured confounders“) 

• The assumption of „No unmeasured confounders“ 

implies 

 (Y(0), Y(1)) independent of X | P(X=1|C) 

• Additional assumption:  0< P (X=1|C) < 1, 

i.e. every patient can receive either treatment 
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Propensity score in practice   

• There are various ways using the propensity score 

(Matching, Weighting, Stratification, Covariate in 

outcome regression model) 
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Propensity score in practice   

• There are various ways using the propensity score 

(Matching, Weighting, Stratification, Covariate in 

outcome regression model) 

• The propensity score has to be estimated: how to 

model? 

• Commonly used: logistic regression model 

• Which covariates to include? 

• Sparse or high-dimensional model? 

• Penalized regression (e.g. lasso-type)? 

• Penalized spline imputation method? 
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A comprehensive cohort study (1) 

• Study conducted by the German Breast Cancer Study 

Group to compare three cycles of chemotherapy (3 

CMF) with six cycles of chemotherapy (6 CMF) in 

patients with non-metastatic node-positive breast 

cancer 

• Randomized as well as patients not consenting to 

randomization were enrolled and followed according to 

a standard protocol 

• Primary endpoint: event-free survival 
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A comprehensive cohort study (2)  

• In this particular study, propensity score as well as 

regression adjustment led to results very similar to 

those of the randomized part 

• Comprehensive cohort studies have been carried out 

very rarely. When only the results of an observational 

study are available (analyzed based on a propensity 

score), how reliable are the results? 

• Systematic comparisons of treatment effects in 

randomized vs. non-randomized studies? 

• What are they about and what can we learn from 

them? 
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Specific Comparisons 

Reference Medical field  Included study sample Number of studies Methodology used 

in observational 

studies 

Direction of bias 

Kuss et al. 2011 

[4] 

Cardiac surgery Randomized and non-

randomized studies comparing 

off- and on pump surgery 

28 non-randomized 

studies and  

51 randomized trials 

Propensity score 

based analyses 

Similar effects 

Lonjon et al. 2014 

[5] 

Surgical 

procedures 

Randomized and non-

randomized studies on surgical 

procedures 

70 non-randomized 

studies and 

94 randomized trials 

Propensity score 

based analyses 

Similar effects 

Zhang et al. 2014 

[8] 

Intensive Care 

Medicine 

Randomized and non-

randomized studies on 

treatment of patients with sepsis 

14 non-randomized 

studies, 

3 systematic reviews 

and 

7 randomized trials 

 

Propensity score 

based analyses 

Overestimation of 

effects 

Ankarfeldt et al. 

2017 

[2] 

Diabetes Randomized and non-

randomized studies on 

treatment with glucose-lowering 

drugs 

2 comparisons with 

11/16 randomized 

studies and 7/4 non-

randomized studies, 

published 2000-2015 

Diverse No efficacy – 

effectiveness gap 

observed 
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General Comparisons 

Reference Medical field  Included study sample Number of studies Methodology used 

in observational 

studies 

Direction of bias 

Kunz & Oxman, 

1998 

[3] 

Not restricted to 

specific medical 

specialties 

Cohorts or meta-analysis of 

clinical trials that included an 

empirical assessment of the 

relation between randomization 

and estimates of effects 

11 comparisons with 

different numbers of 

studies published until 

1998 

Diverse Over-, underestimation, 

reversal of effect; similar 

effects, “unpredictability 

paradox” 

Odgaard-

Jensen et al. 

2011 

[6] 

Not restricted to 

specific medical 

specialties 

Cohorts of studies, systematic 

reviews and meta-analyses of 

healthcare intervention that 

compared random vs non-

random allocation 

10 comparisons with 

different numbers of 

studies published until 

2009 

Diverse Over- and 

underestimation as well 

as similar effects, 

“inconclusive results” 

Anglemyer et 

al. 2014 

[1] 

Not restricted to 

specific medical 

specialties 

Systematic reviews to compare 

effects of interventions tested in 

trials with those tested in 

observational studies 

15 systematic reviews Diverse – one 

comparison for 

propensity score 

based analyses 

Some over- and 

underestimation of 

effects, mostly similar 

effects 

Soni et al. 2019 

[7] 

Oncology Observational studies comparing 

two treatment regimes for any 

diagnosis of cancer and matching 

randomized trials 

350 treatment 

comparisons (non-

randomized) and 121 

randomized trials 

(published 2000-2016) 

Diverse – “advanced 

statistical methods” 

considered 

No agreement beyond 

what is expected by 

chance 
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J Clin Oncol 2019. 
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Soni et al. 

J Clin Oncol 2019 
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Soni et al. 

J Clin Oncol 2019 
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Soni et al. 

J Clin Oncol 2019 
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J Clin Oncol 2019. 
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Zinman et al. NEJM, 2015 
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Zinman et al. NEJM, 2015 

CV 

Death 
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Potential mediators 

MECHANISTIC CATEGORY Variable Name  

GLYCEMIA 
HbA1c HBA1C  

Fasting Plasma Glucose FPG 

VASCULAR TONE 

Systolic BP SBP 

Diastolic BP DBP 

Heart Rate HR 

LIPIDS 

HDL-C HDL 

LDL LDL 

Triglycerides TRIGL 

RENAL 

Urine Albumin: Cr Ratio logUACR 

eGFR (MDRD) EGFRM 

eGFR (CKD-num EPI) EGFRC 

BODY MASS 

Weight  WEIGHT 

BMI BMI 

Waist Circumference WAIST 

VOLUME 

Hematocrit HCT 

Hemoglobin HGB 

Albumin ALB 

OTHER Uric Acid URIC 
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Inzucchi et al. 

Diabetes Care 2018. 
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Model building strategy 

• Starting with bivariable Cox regression models of the effect of 

treatment and the potential mediators M on outcome Y, one at a 

time separately for all potential mediators 

• Multivariable Cox regression model with one representative of 

the different mechanistic categories 

• Variable being the most promising with regard to its potential as 

mediator was chosen as representative  

• Only variables chosen, which showed an effect on outcome Y 

and which led to a reduced treatment effect estimate (hazard 

ratio, HR, shifted to one) in the bivariable models 

• For ranking of the strength of mediators: 

Multivariable model building with step-up procedure including in 

each step additionally the variable with the most mediating effect 
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Inzucchi et al. Diabetes Care 2018. 

Unadjusted  0.615    0.491, 0.770                  -- 
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Bradford Hill„s criteria (1965) 

46 

1. Strength of Association 

2. Consistency 

3. Specificity 

4. Temporality 

5. Biological Gradient 

(dose response) 

6. Plausibility 

7. Coherence 

8. Experimental Evidence 

9. Analogy 

Hill AB, Proc Royal Soc Med 1965 
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Sir Austin Bradford Hill  

47 

• Presentation of „Principles of 

Medical Statistics“ (The Lancet, 

1937) 

• Randomized trial on streptomycin 

in patients with pulmonary 

tuberculosis (BMJ, 1948) 

• Demonstration of connection 

between cigarette smoking and 

lung cancer (with Richard Doll, 

BMJ, 1954) 



ms, cs, jb IQWIG im Dialog 2019 – Köln 21.06.2019 

Discussion and Conclusions (1) 

• Methods of causal inference, e.g. propensity score 

analyses, rely on assumptions that cannot be verified 

with the data usually available. 

• Most critical is the assumption of 

 “no unmeasured confounders“ 

and the inclusion of confounders into a propensity 

score model.  

• This assumption is automatically fulfilled when 

randomization is employed 

 (“Design trumps analysis“). 
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Discussion and Conclusions (2) 

• Empirical comparisons of treatment effects in 

randomized trials and observational studies do not 

paint a clear picture. Some are themselves susceptible 

to bias (“A bias in the evaluation bias…”, Franklin et al. 

Epidemiol Methods 2017) 

• Improvement of methodology for such comparisons is 

urgently needed in order to not compare “apples and 

oranges” but “apples and apples” (Lodi et al., Am J 

Epidemiol 2019). 

• Treatment effects based on observational studies are 

often susceptible to other sources of bias, e.g. time-

related biases, besides confounding. Thus, all sources 

of bias have to be considered! 
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Discussion and Conclusions (3) 

• Methods for causal inference are best suited in 

situations when randomization is not feasible in order 

to obtain the best possible evidence. 

• They are also useful in randomized trials in order to 

address specific complications, e.g. non-compliance, 

treatment cross-over etc. 

• As shown for the EMPAREG-Outcome trial, they can 

help answer additional questions on mechanisms of 

treatment.  

• Instead of a traditional mediation analysis, more 

refined methods can be used (e.g. Aalen et al. Biom J 

2019) 
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Take-Home Message  

51 

Randomize if you can, 

 

 Model if you must! 

Modified according to J. Hanley, 2019 
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